1 
$$f(x) = 2x - 3$$
 and  $g(x) = x^2$ 

Show that  $f^{-1}(55) = fg(4)$ 

[4 marks]

2 (a) 
$$g(x) = 2x$$
 and  $h(x) = \frac{x-1}{2}$ 

$$hg(x) = \frac{2x-1}{2}$$

Circle the expression for hg(x)

[1 mark]

$$\frac{2x^2 - x}{2}$$

$$(2x-1)$$

$$x^2-x$$

$$x - 1$$

3 f(x) = 2x + 5

Show that  $3f(x) - 12f^{-1}(x)$  simplifies to an integer.

[4 marks]

$$f'(x) = \frac{x-5}{2}$$

$$3(2x+5) - 1/2(\frac{x-5}{\chi_1})$$

$$= 6x + 15 - 6x + 30$$

f(x) = 
$$3x$$
 and g(x) =  $x^2$   
Circle the expression for fg(x)

[1 mark]



 $9x^2$ 

 $3x^3$ 

 $9x^{4}$ 

5 
$$f(x) = x^2 + 6x$$
  
 $g(x) = 2x + 4$ 

5 (a) Show that 
$$fg(x) = 4x^2 + 28x + 40$$

$$fg(x) = (2x+4)^2 + 6(2x+4)$$

$$= 4x^2 + 16x + 16 + 12x + 24$$

$$= 4x^2 + 28x + 40 \quad (shown)$$

**5 (b)** Solve 
$$fg(x) = -5$$

[3 marks]

$$4x^{2} + 28x + 40 = -5$$

$$4x^{2} + 28x + 45 = 0$$

$$x = -28 \pm \sqrt{28^{2} - 4(4)(45)}$$

$$2(4)$$

$$= -28 \pm \sqrt{64}$$

$$= \frac{-28 \pm 8}{8} = \frac{-20}{8} \text{ or } -\frac{36}{8}$$

$$= -2.5 \text{ or } -4.5$$

[2 marks]

[2 marks]

6 (a) Show that gf(2) is an integer.

$$\frac{9f(x) = 6(3x+9) - 1}{5}$$

6 (b) Show that  $f^{-1}(8)$  is **not** an integer.

let 
$$f(x) = \frac{3x+q}{5}$$

$$y = 3x + 9$$

5

$$x = 5y - 9$$

3

$$f^{-1}(x) = \frac{5 \times 9}{3} = \frac{5(8) - 9}{3} = \frac{31}{3} = 10.3$$

7 
$$f(x) = x - 3$$
  $g(x) = 4x - 7$ 

7 (a) Work out the value of fg(6)

[2 marks]

fg(x) = 
$$(4x-1)-3$$
  
=  $4x-10$ 

Answer \_\_\_\_

**7 (b)** Solve  $(f(x))^2 = g(x)$ 

[4 marks]

$$(x-3)^2 = 4x-7$$

$$x^2 - 10x + 16 = 0$$

**(**(1)

Answer x = 8 and x = 2